constrained parametric min-cuts: exciting segmentation for the sake of recognition

constrained parametric min-cuts: exciting segmentation for the sake of recognition - Selamat datang di situs media global terbaru Xivanki, Pada halaman ini kami menyajikan informasi tentang constrained parametric min-cuts: exciting segmentation for the sake of recognition !! Semoga tulisan dengan kategori 3d recognition !! cvpr 2010 !! graph cuts !! image segmentation !! inference !! multiple segmentations !! soup of segments !! ini bermanfaat bagi anda. Silahkan sebarluaskan postingan constrained parametric min-cuts: exciting segmentation for the sake of recognition ini ke social media anda, Semoga rezeki berlimpah ikut dimudahkan Allah bagi anda, Lebih jelas infonya lansung dibawah -->


I would like to introduce two papers about Constrained Parametric Min-Cuts from C. Sminchisescu's group.  These papers are very relevant to my research direction (which lies at the intersection of segmentation and recognition).  Like my own work, these papers are about segmentation for recognition's sake.  The segmentation algorithm proposed in the paper is a sort of "segment sliding approach", where many binary graph-cuts optimization problems are solved for different Grab-Cut style initializations.  These segments are then scored using a learned scoring function -- think regression versus classification.  They show that these top segments are actually quite meaningful and correspond to object boundaries really well.  Finally a tractable number of top hypothesis (still overlapping at this stage), are piped into a recognition engine.

The idea that features derived from segments are better for recognition than features from the spatial support of a sliding rectangle resonates in all of my papers.  Regarding these CVPR2010 papers, I like their ideas of learning a category-free "segmentation-function" and the sort of multiple-segmentation version of this algorithm is very appealing.  If I remember correctly, the idea of learning a segmentation function comes to us from X. Ren, and the idea of using multiple segmentation comes from D. Hoiem. These papers are a cool new idea utilizing both insights.

J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation. In CVPR 2010.

F. Li, J. Carreira, and C. Sminchisescu. Object Recognition as Ranking Holistic Figure-Ground Hypotheses. In CVPR 2010.


-------

Spotlights for these papers are during these tracks at CVPR2010:
Object Recognition III: Similar Shapes
Segmentation and Grouping II: Semantic Segmentation tracks

Demikian info constrained parametric min-cuts: exciting segmentation for the sake of recognition, Semoga dengan adanya postingan ini, Anda sudah benar benar menemukan informasi yang memang sedang anda butuhkan saat ini. Bagikan informasi constrained parametric min-cuts: exciting segmentation for the sake of recognition ini untuk orang orang terdekat anda, Bagikan infonya melalui fasilitas layanan Share Facebook maupun Twitter yang tersedia di situs ini.

Previous Post Next Post