Learning and Inference in Vision: from Features to Scene Understanding

Learning and Inference in Vision: from Features to Scene Understanding - Selamat datang di situs media global terbaru Xivanki, Pada halaman ini kami menyajikan informasi tentang Learning and Inference in Vision: from Features to Scene Understanding !! Semoga tulisan dengan kategori graphical models !! machine learning !! scene understanding !! tutorial !! ini bermanfaat bagi anda. Silahkan sebarluaskan postingan Learning and Inference in Vision: from Features to Scene Understanding ini ke social media anda, Semoga rezeki berlimpah ikut dimudahkan Allah bagi anda, Lebih jelas infonya lansung dibawah -->



Tomorrow, Jonathan Huang and I are giving a Computer Vision tutorial at the First MLD (Machine Learning Department) Research Symposium at CMU. The title of our presentation is Learning and Inference in Vision: from Features to Scene Understanding.

The goal of the tutorial is to expose Machine Learning students to state-of-the-art object recognition, scene understanding and the inference problems associated with such high-level recognition problems. Our target audience is graduate students with little or no prior exposure to object recognition who would like to learn more about the use of probabilistic graphical models in Computer Vision. We outline the difficulties present in object recognition/detection and outline several different models for jointly reasoning about multiple object hypotheses.

Demikian info Learning and Inference in Vision: from Features to Scene Understanding, Semoga dengan adanya postingan ini, Anda sudah benar benar menemukan informasi yang memang sedang anda butuhkan saat ini. Bagikan informasi Learning and Inference in Vision: from Features to Scene Understanding ini untuk orang orang terdekat anda, Bagikan infonya melalui fasilitas layanan Share Facebook maupun Twitter yang tersedia di situs ini.

Previous Post Next Post